国产91丝袜在线播放_偷拍亚洲色图_欧美精品久久一区二区_不卡日本视频

學術咨詢服務,正當時......期刊天空網是可靠的職稱工作業績成果學術咨詢服務平臺!!!

初中數學教學子女建設改革發展

發布時間:2016-03-18所屬分類:教育論文瀏覽:1

摘 要: 初中數學的新建設應用方針有什么特點呢,要如何來加強對數學的新管理模式呢?本文是一篇數學論文。基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展

  初中數學的新建設應用方針有什么特點呢,要如何來加強對數學的新管理模式呢?本文是一篇數學論文。基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處于獨立的狀態.

  摘要:數學概念分為原始概念和定義概念。原始概念往往是直接從客觀事物的空間形式和數量關系抽象而來的,比較直觀具體。在教學中,教師若能很好地利用直觀教具,使學生通過觀察而明確概念所反映的對象、特性,以及概念所適用的范圍,則能收到較好的效果。定義概念,雖然是對客觀事物的空間形式和數量關系的反映,但其產生和發展經歷了抽象和概括的過程,具有其本身的復雜性和抽象性。因此,在進行定義概念教學時,教師有針對性地引導和幫助學生逐個角度、逐個層面地認識概念反映的對象,是很有必要的。

  關鍵詞:初中數學,數學教學,數學論文

  1.明確概念的研究對象

  對概念要做到能夠正確理解,明確概念的研究對象是第一要義。教師在進行概念教學,特別是在初步建立新概念時,必須首先明確指出概念的研究對象是什么,同時可采用類比、反例等手段對概念的研究對象進行個性凸顯。例如,對“平行線”之一概念的教學,教師在引導學生通過觀察得出平行線是“同一平面內的兩條不相交的直線”時,要強調平行線概念的研究對象是同一平面內的兩條直線,它不是射線、線段,更不是曲線。學生對于研究對象的明確,意味著對新概念已初步地接受,有了初步的認知。

  2.明確概念成立的條件

  要正確理解概念,明確概念成立的條件同樣是很重要的環節。有些概念的表述很相似,但隨著其限制條件的不同,概念的內涵可能完全不同。比如,“在同一平面內的兩條不相交的直線是平行線”,這一關于平行線的概念,如果忽視了其前提條件“在同一平面內”,“平行線”之一概念就不一定成立。因為在空間中確實存在著不相交但也確實不平行的直線——異面直線;再如“圓”之一概念的表述為“在同一平面內,到一定點的距離等于定長的點的集合”,如果沒有“在同一平面內”這一前提作保障,“圓”的概念同樣不能成立,因為在空間中到定點的距離等于定長的點的集合可能是球面。像這樣的條件性較強的概念在中學數學中是很多的,教師要用類比的方法,使學生對概念成立的條件有明確的認識和全面的理解。

  數學論文:《初中數學教與學雜志》,《初中數學教與學雜志》本刊堅持為社會主義服務的方向,堅持以馬克思列寧主義、毛澤東思想和鄧小平理論為指導,貫徹“百花齊放、百家爭鳴”和“古為今用、洋為中用”的方針,堅持實事求是、理論與實際相結合的嚴謹學風,傳播先進的科學文化知識,弘揚民族優秀科學文化,促進國際科學文化交流,探索防災科技教育、教學及管理諸方面的規律,活躍教學與科研的學術風氣,為教學與科研服務。

初中數學教學子女建設改革發展

  3.揭示概念的內涵

  概念的內涵是概念的反映對象在一定條件下所具備的本質屬性,是此概念區別于其他概念的根本標志。一個定義概念,其研究對象及相應條件的確定,即意味著概念內涵的確定。因此,概念教學的主要任務之一即是要凸顯概念的內涵本質和本質特征,同時要幫助學生排除誤解因素對本質理解的干擾。

  由于在教學中,給概念下定義常用“種概念加類差”的方式,因此概念教學時要重點講解定義中種概念和類差,使學生認識到被定義概念既擁有它的種概念的一切屬性,又有自己所獨有的特性即類差。例如,“兩組對邊分別平行的四邊形是平行四邊形”這一定義中,“四邊形”就是平行四邊形所具有的最鄰近的種概念,類差是“兩組對邊平行”。應強調指出平行四邊形首先是四邊形,具有四邊形的一切屬性,如內角和為360°,具有不穩定性等,同時還應強調平行四邊形是特殊的四邊形,特殊在“有兩組對邊分別平行”。

  有些概念的種概念和類差不夠明確,教學時通常還要從側面對這些概念的內涵進行闡述。比如“互為余角”概念的教學,必須強調兩點:其一,必須是兩個角,單獨一個90°角或和為90°的三個角及三個以上角,都不能說互為余角;其二,兩個角之和必須為90°。這兩點即是“互為余角”這一概念的本質所在。另外,教學實踐表明,很有必要向學生說明兩個角是否互余與角所處的位置無關,比如南極有一個角為30°,北極有一個角為60°,但這兩個角仍然互為余角。

  4.在應用中加深對概念的理解

  無疑,學習概念是為了應用。學生對初學概念即使能弄清其基本含義,也未必能運用概念進行運算、證明。同時,應用是對概念的加深理解最有效的方式和途徑,具體應用過程可使概念的對象屬格化、抽象的條件具體化、深刻的定義淺顯化。所以,必須配以典型的例題,引導學生掌握概念的適用范圍和方法,從而加深學生對概念的理解。仍以“互為余角”概念為例,配以如下例題,要求學生自己先行解答。

  例:如圖所示,在△ABC中,∠ACB=90°,CD⊥AB于點D,DE⊥AC于點E,則圖中互余的角共有( ?搖?搖)對。

  A.6 B.7 C.8 D.9

  結果多數學生選C。我們對此題作如下分析:在解決直角三角形中的互余問題時,要考慮三種情況:①直角三角形中的直角被分成兩部分的兩個角互余:∠1與∠2,∠3與∠4;②同一直角三角形中的兩個銳角互余:∠2與∠B,∠1與∠3,∠4與∠A,∠A與∠B,∠1與∠A;③等量代換得到的互余角:∠2=∠3,故∠3+∠B=90°,∠2+∠4=90°,即∠3與∠B、∠2與∠4也是互余角,所以共有9對互余角,正確答案為D。該題中學生出錯的主要原因是不自覺中對“互為余角”強調了位置關系。通過以上分析,學生可以更全面、深刻地理解“互為余角”這一概念。

  5.梳理概念之間的關系,形成概念體系

  在中學數學教學過程中,數學概念是分散的、漸進的,有些概念的理解不是一次能完成的。因此,教師應該有計劃地進行單元總結或階段歸納。比如絕對值、算數平方根、完全平方數,這是中學數學不同階段的三個表述完全不同的概念,但它們之間有一個共同點,都是非負數,即|a|≥0,≥0,a2≥0.在這個意義上可把它們劃歸為一類,可以利用這一類的非負性解決很多相關的數學問題。

最新分區查詢入口

SCISSCIAHCI

主站蜘蛛池模板: 三都| 阳新县| 明光市| 正宁县| 化德县| 灌云县| 瑞金市| 屏边| 榆林市| 保康县| 云安县| 石家庄市| 东兴市| 江油市| 玛曲县| 乌鲁木齐县| 辰溪县| 呈贡县| 莫力| 建水县| 蒙山县| 镇坪县| 东光县| 顺义区| 惠安县| 泊头市| 临夏县| 灯塔市| 当阳市| 宽城| 柞水县| 象山县| 威海市| 霍山县| 建德市| 桓仁| 洪洞县| 房产| 玉山县| 兰坪| 运城市|